CO AND CH4 COLUMN RETRIEVAL FROM THE SCANNING HIGH RESOLUTION INTERFEROMETER SOUNDER (S-HIS)

Kenneth H. Vinson, Henry Revercomb, H. Ben Howell, Robert Knuteson

Space Science and Engineering Center (SSEC) University of Wisconsin, Madison, Wisconsin

Theoretical Development

The technique to be applied to the observations from the S-HIS instrument is one developed for the NASA SAFARI experiment to map CO distribution from lines. The method makes use of high spectral resolution emission lines observed by the S-HIS spectrometer to derive an optical depth using weak absorption lines. It is less sophisticated than a full profile retrieval approach, but is very useful for a survey result of localized events. A ratio of on-line to off-line emission for selected lines of the gas of interest provides a measure of the gas amount.

The form of the equation to be used can easily be derived from a single-layer atmosphere approximation:

\[N_{\text{on}} - N_{\text{off}} = N_{\text{on}}(N_{\text{on}} + N_{\text{atm}}) \frac{1}{A(B)} \]

where \(N_{\text{on}} \) is the S-HIS observed upwelling spectral radiance at an altitude of 20 km, \(A \) is the atmospheric transmission for wave number \(v \), \(B \) is the atmospheric emission for \(v \) at a temperature \(T \) which approximates the mean atmospheric temperature in the region of interest, and \(N_{\text{atm}} \) is the contribution from surface reflection and

\[\frac{1}{A(B)} \]

is the vertical distribution of the observed gas is known, i.e.

\[\frac{dz}{dz} \text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\text{and} \]

\[\text{is the atmospheric emission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]

\[\text{is the S-HIS observed upwelling spectral radiance} \]

\[\nu \text{is the emission from the surface, and} \]

\[N_{\text{atm}} \text{is the atmospheric transmission for wave number} \]

\[\nu \text{at a temperature} \]

\[T \text{which approximates the mean atmospheric temperature in the region of interest, and} \]

\[N_{\text{atm}} \text{is the contribution from surface reflection and} \]

\[\text{is the vertical distribution of the observed gas is known, i.e.} \]

\[\frac{dz}{dz} \]